
Abstract— In this paper, the optimum values of the parameters of a two-layer soil model, are estimated by a traditional method and an
evolutionary method.

Both the methods start with the well-known Wenner resistivity measurement data. In Wenner method of measuring soil resistivity, a set of
apparent resistivity measurements are made with different electrode spacing.  For each measured value of apparent resistivity, the same is
computed in terms of soil parameters, which are the upper layer soil resistivity, the lower layer soil resistivity and the height of the upper layer.
Then optimal values of soil parameters are iteratively estimated.  Optimal values are those values of soil parameters for which the sum of absolute
values of normalised error is the minimum. The difference between measured and computed values of soil resistivity is termed as error.

Particle Swarm Optimization is used as the evolutionary method in this paper.  The search process is accelerated by a search space reduction
technique to obtain the results in minimum number of iterations and time.

The algorithms have been tested on nine sets of test data and the results obtained are better than all the results published so far.

Keywords— Particle Swarm Optimization, Search space reduction, Soil parameter estimation, Soil resistivity, Wenner method,
                     Evolutionary Computation, Apparent resistivity.

                                                       —————————— u ——————————

1. INTRODUCTION

The Wenner four probe method of measuring soil
resistivity  is  very  popular  among  ground  mat  design
engineers. Soil resistivity is rarely uniform and a two-layer
model is widely accepted as the best for ground mat design
purpose.  In  Wenner  method,  four  probes  are  used  for  soil
resistivity measurement. They are placed along a straight
line and driven into earth with equal spacing among them.
The depth of penetration of a probe into earth is adjusted
approximately to ten percent of the probe spacing. The
outer probes are meant for passing a current through earth
and the inner probes are meant for measuring the potential
difference between them.

Fig.1 Wenner four probe method of measuring apparent
resistivity

 As soil resistivity is found to vary with probe spacing, a set
of measurements are made with different electrode spacing
for estimating the parameters of the two-layer soil model.
Using the measurement data, apparent resistivity
corresponding to each measured value are computed using
(1).
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In (1)
ρ1  is the upper layer soil resistivity,
k   is the reflection factor given by  (ρ2 - ρ1)/( ρ2 + ρ1) ,
ρ2  is the lower layer soil resistivity,
h  is the height of the upper layer and
a  is the probe spacing.
 ρ1, ρ2 and h are the three parameters of the two-layer soil
model.

The infinite term given in (1) is computed a finite number
of times depending on the accuracy requirement;  2000 is  a
quite  reasonable  value  for  the  upper  limit  of  ‘n’  as
suggested by researchers.

 If a set of ‘m’ measurements are made, each measurement
corresponding to particular electrode spacing, then
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apparent resistivity values are computed for each measured
value. As computed value of apparent resistivity is a
function of  ρ1, ρ2 and  h, the optimization problem is stated
as locating values for ρ1,  ρ2 and  h such that the objective
function F  is minimum and stated as (2).
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here i
meas

ar  is  the ith measured value of apparent

resistivity and i
comp

ar  is  the ith  computed  value  of
apparent resistivity.

Research  has  been  going  on  in  this  filed  for  decades
together and plenty of literature is already available on
estimation of two-layer soil parameters. Additional
information on determination of soil parameters using
traditional and evolutionary methods can be obtained from
[1] - [7].

2. TRADITIONAL ALGORITHM

The traditional method used here is an unconstrained, non-
linear optimization algorithm in which F, as suggested by
(2), is minimized without subjecting it to any constraint. F is
zero when measured and computed values of apparent
resistivity are the same in all the ‘m’ cases. As apparent
resistivity values are to be computed in ‘m’ cases, there is a
set of ‘m’ non-linear equations which are split into a set of
‘m’ linear equations and a correction part.   The equations
are solved iteratively to obtain the optimum values of soil
parameters.

The linear equations are of the form A=B*C    where

A is the vector of difference between measured and
computed values of apparent resistivity,

B is the matrix of partial derivatives of ρa  given in (1) with
respect to ρ1, ρ2 and h

C is the correction vector consisting of elements ∆ρ1, ∆ρ2

and ∆h.
A is of size m x1, B is of size m x 3 and C is of size 3 x 1.

When the set of linear equations are solved, the correction
vector C can be found using (3).

1(  ) (  )T TC B I B B I A a-=                 (3)

BT is the transpose of matrix B and I is an identity matrix of
size m x m. α is a factor which decides the rate of
convergence. The choice of α is normally by trial and error.
But sufficient  care should be taken as a wrong choice of  α
results in failure of convergence.

Now the elements of A and B are to be determined. If there
are ‘m’ measurements, then for each measured value of
apparent resistivity, the same is computed using (1). The
difference between measured and computed values is
found in all the ‘m’ cases to form vector A.

 For determining the elements of B, the equations given Fig.
2 are made use of which give the partial derivatives of ρa

with respect to ρ1,ρ2 and h. To evaluate these equations, an
initial   set of values of ρ1,ρ2 and h  are essential. These
values can be suitably assumed. A better practice is to take
the  initial  guess  value  of  ρ1 as the measured value of
apparent resistivity with minimum electrode spacing and
the initial guess value of ρ2 as the measured value of
apparent resistivity with maximum electrode spacing.
Initial guess value of ‘h’ is taken as half of the maximum
electrode spacing.
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Fig.2 Partial derivates of ρa with respect to ρ1, ρ2 and h

2.1 Structure of A,B and C

An element of vector A is the difference between the
measured and computed values of apparent resistivity.
Vector A is of size m x1. Matrix B contains elements which
are the partial derivatives of ρa with respect to ρ1, ρ2 and h.
There  are  ‘m’  rows,  where  each  row  corresponds  to  a
measurement. The matrix is of size m x 3.  Vector C has
correction elements to update the values of ρ1,  ρ2 and h in
iteration. It is of size 3x1. The structures are shown in Fig.3.
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Fig.3. Structure of A.B and C

2.2 Step-by-step procedure for estimating optimal
values of soil parameters by traditional algorithm

1. Assign suitable initial values for ρ1,  ρ2 and h. Start
iteration count. Specify tolerance.

2. Evaluate elements of A using the most recent
values of ρ1, ρ2 and h.

3. Evaluate elements of B using the equations given
in Fig.2 with the most recent values of ρ1, ρ2 and h.

4. Compute 1(  ) (  )T TC B I B B I A a-=

5. If ∆ρ1, ∆ρ2 and ∆h, the elements of C, are less than
the specified tolerance, go to step 7.

6. Modify  the  present  values  of  ρ1,  ρ2 and  h  to
(ρ1+∆ρ1), (ρ2+∆ρ2) and (h+∆h). Advance iteration
count and go to step 2.

7. Display the final values of ρ1, ρ2 and h.
8. Stop

3. THE PSO ALGORITHM

The PSO method eliminates most of the mathematical
computations involved in the traditional algorithm. The
basic PSO algorithm for obtaining the optimal values of soil
parameters ρ1, ρ2 and h is the following.

A population of ‘L’ number of trial values is generated for
each soil parameter.  With one trial value for a parameter
from each population, apparent resistivity values are
computed for ‘m’ measurements and the objective function
stated in (2) is evaluated. The process is repeated for the

next set of trial values and so on till the end of population.
For each set of trial values personal best is preserved and at
the end of population global best is identified. Now the
population elements are modified and the process is
repeated with the modified population elements. The
objective function value keeps reducing and the process is
terminated after a definite number of iterations.

3.1 Search Space Reduction
The  normal  PSO  algorithm  explores  a  large  space  for
locating optimal values of ρ1, ρ2 and h. The search space can
be reduced and the process can be expedited using the
following technique.

 In any traditional iterative method, initial guess values of
the soil parameters ρ1,  ρ2 and h are mandatory for solving
the problem; also these guess values should be close to the
final converged values.  This aspect can be incorporated in
the PSO algorithm to reduce the search space. Thus the
initial search space for each soil parameter is defined by
covering a range above and below its initial guess value.
For example, at start, the upper limit of a soil parameter can
be set as thrice the initial guess value and the lower limit as
zero. The initial guess value is found in the traditional
algorithm.

                                                 Initial guess value

Fig. 4. Initial search space for a soil parameter

Hence to reduce the search space, the unconstrained
optimization problem is converted to a constrained
problem by imposing limits on variation of the values of
soil parameters ρ1,  ρ2 and h. The modified optimization
problem is stated as (4).
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The objective function mentioned above is constrained by
upper and lower limits of soil parameters ρ1, ρ2 and h at any
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point of time during the iteration process. Initial guess
values are found as in the traditional algorithm.  Now the
upper  and lower limits of ρ1,  ρ2 and  h  can  be  fixed.   The
upper limit of a parameter can be ‘k1’ times the initial guess
value and the lower limit can be zero. Normally k1 is
assigned a value greater than 2.  Due to the imposed
constraints, the search for a parameter is carried out only in
the range defined.

As the search progresses, the upper and lower limits of soil
parameters are reset about their most recent global best
values instead of initial guess values. The upper limits of
the parameters are set as ‘k1’ times the most recent global
best value of that parameter and the lower limits are set as
(2-k1) times the global best value.  The limits are fixed as
given in (4) with starting value for k1 equal to 2. This means
that the upper limit of the search space of a soil parameter
has become twice its most recent global best value with
lower limit remaining zero. Subsequently, say, when k1 is
reduced to 1.5 on improvement in global best fitness value,
the upper limit and lower limit of a parameter become  1.5
times and 0.5 times its most recent global best value. The
value of k1 can be gradually reduced to 1.1. This means that,
at any point of time during the search, we are trying to
locate the optimal value of a parameter in a narrow range
above and below its most recent global best value.  Fig.5
shows the reduction in search space as iteration progresses.
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Fig. 5.  Reduction in search space

Fitness =   1/ (1+F).                           (6)

3.2 Step-by-step procedure for estimating optimal
values of soil parameters
1. Initialize a matrix A of size L x 4, the first three

columns of which are for retaining trial values of

ρ1,  ρ2 and h and the fourth column, to retain
computed fitness values.  The elements of the first
three columns are initialized with random
numbers mapped to the initial search range using
standard mapping rule.

2. Copy the elements of A to another matrix B.  In
due course, B will retain the best personal values of
ρ1, ρ2, h and the corresponding fitness value.

3. Consider the set of trial values for ρ1, ρ2 and h from
the first row of A.

4. Compute the apparent resistivity for each
measured value of resistivity using (1).

5. Compute fitness using (6) and store the value in A
as the fourth column element of the same row.

6. Compare  the  fitness  values  in  A  and  B.  If  the
fitness value in A is higher, copy the row elements
to the corresponding positions in B.

7. Extract the set of trial values of ρ1,  ρ2 and  h  from
the next row of A.

8. If not end-of-matrix, go to step 4.
9. Locate the highest fitness value in B and the

corresponding global best values of ρ1,  ρ2 and h. If
fitness is more than 0.999 or iteration count exceeds
500, stop the process.

10. Modify the search space using (5)  by reducing the
value of k1 depending on the current best global
fitness value.  Modify all the values of ρ1,  ρ2 and h
in matrix A without violating limits. Go to step 3.

3.3 Modifying the values of   ρ1,ρ2 and h
For modifying the trial values of ρ1,  ρ2 and  h  in  matrix  A,
the following well known equation is used.

vmodified =w*v +c1 * rand1 * (pBest – p) + c2 * rand2 * (gBest – p)
                                                                                                (7)
The modified value of  a  soil  parameter is  the sum of three
terms which are the following.

· its present value multiplied by a weighting
function

· the product of three parameters: a constant, the
difference between its personal best value and the
present value  and a random number less than one

· the product of three parameters: a constant, the
difference between its global best value and the
present value  and a random number less than one

While modifying the soil parameter values in matrix A,
their personal best values can be extracted from the same
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row of matrix B and the global best values as obtained from
step 9 of the step-by-step procedure. In case the modified
value of a parameter violates the upper limit or lower limit,
its value is fixed as the limiting value it has violated.  This
check retains the trial values in the search space.  c1,  c2 and
w  can  be  assigned  values  as  in  any  standard  PSO
algorithm. As this is a search for local optimum because of
the nature of the problem it is ideal to choose a value of 0.4
for ‘w’.

4 EXECUTION AND RESULTS

Table I and Table II give the Wenner resistivity
measurement data. Table I gives electrode spacing for nine
different set of measurement data and Table II gives the
corresponding measured apparent resistivity values. Note
that the first three sets of data are theoretically generated.

4.1 Test data
TABLE I

ELECTRODE SPACING

Set Electrode spacing (m)
1 1.0  2.0  3.0  4.0 5.0
2 2.0  4.0  6.0  8.0 10.0
3 2.0  4.0  6.0  8.0 10.0
4 2.5  5.0  7.5  10.0  12.5  15.0
5 1.0 1.5 2.5 3.0 5.0 10.0
6 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0
7 2.5 5.0 7.5 10.0 12.5 15.0 20.0 25.0
8 1.0 2.0 3.0 4.0
9 1.0 2.0 4.0 10.0 20.0 40.0

TABLE II
MEASURED VALUES OF APPARENT RESISTIVITYCORRESPONDING

TO THE ELECTRODE SPACING GIVEN IN TABLE I

Se
t

Measured apparent resistivity (Ω-m)

1 693.7
4

251.6
2 84.56 37.64 25.32

2 123.3
3

189.9
9

258.9
3

320.2
7

374.1
3

3 102.2
6

113.0
7

129.7
7

147.5
2

163.9
5

4 320.0
0

245.0
0

182.0
0

162.0
0

168.0
0

152.0
0

5 255.0
0

290.0
0

315.0
0

376.0
0

528.0
0

690.0
0

6 58.71 61.79 58.10 61.00 73.79 78.00 79.1
3

78.
19

7 451.6
0

366.7
0

250.2
0

180.0
0

144.2
0

120.0
0

115.
50

96.
50

8 156.4
0

113.1
0 95.20 65.30

9 136.
00

140.
00

214.
00

446.
00

685.
00

800.
00

Data courtesy:  [1], [2]

4.2 Programming tips for PSO algorithm
Recommended values: c1=2, c2=2, w=0.4, initial value of
k1=2, final value of k1=1.1, ‘n’  in (1)=2000
Convergence criterion: fitness >0. 999/iteration count >500

4.3 Programming tips for Traditional algorithm
The program is sensitive to the choice of α mentioned in
step 4 of the step-by-step procedure. In this algorithm a
value of 0.02 given for α
Convergence criterion: All the elements of C are less than
tolerance, 0.0001.

4.4 Execution results
Execution results are shown in Table III. Execution is done
using a 3.5 GHz, AMD FX -8320 Eight-Core processor with
4GB RAM.

TABLE III
EXECUTION RESULTS

Set ρ1
(Ω-m)

ρ2
(Ω-m)

h
m

Iterat
ion

count

Executi
on time

(s)

F Meth
od

1 999.7140 19.9845 0.9999 500 72.95 0.00016 PSO
999.7570 19.9903 0.9998 547 12.93 0.00040 Trad.

2 99.9987 998.5899 2.4995 500 49.12 0.00048 PSO
100.0027 998.9895 2.4999 4495 92.27 0.00025 Trad.

3 100.0040 300.0793 5.0010 124 13.16 0.00015 PSO
100.0043 299.9833 5.0004 1319 27.00 0.00006 Trad.

4 378.3809 144.9014 2.4971 500 72.94 0.1583 PSO
365.8878 144.1014 2.8020 477 12.56 0.1847 Trad.

5 242.3719 983.6668 1.9818 500 62.58 0.1798 PSO
244.2724 1004.70 2.0070 1916 45.96 0.1946 Trad.

6 58.1448 89.5127 1.2219 500 77.77 0.3624 PSO
57.1118 93.0160 1.4608 610 16.36 0.3978 Trad.

7 481.0639 89.5661 4.5287 500 112.28 0.1887 PSO
487.6667 91.5894 4.5063 486 17.04 0.2467 Trad.

8 173.4375 46.8050 1.3893 500 52.67 0.1409 PSO
167.0466 44.9502 1.5793 421 8.27 0.1952 Trad.

9 133.0799 1033.10 3.0102 500 58.17 0.2862 PSO
149.5676 1041.30 3.0801 2999 72.09 0.5457 Trad.

4.5 Comments on results
Comparison of results obtained by the two algorithms
shows that PSO stands superior as far as simplicity and
minimization are concerned. During execution it has been
found that PSO doesn’t need 500 iterations for optimal
results, in most of the cases convergence has been obtained
within 300 iterations. Moreover PSO algorithm eliminates
all complex mathematical steps and the need of derivatives.
Objective function values show that accuracy is more for
PSO results.

4.6 Comparison of PSO results with GA solutions of
Ioannis [3]

 Table IV shows the comparison of PSO solutions with GA
solutions of Ioannis [3]. In all the six cases PSO solutions
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are found superior to GA solutions as far as accuracy is
concerned. Also PSO works faster comparing with GA.

TABLE IV
COMPARISON OF PSO SOLUTION WITH GA SOLUTIONS

OF IOANNIS [3]

Set
of
data

ρ1
(Ω-m)

ρ2
(Ω-m)

h
m

F Method

4 374.921 144.518 2.559 0.1600 GA
378.3809 144.9014 2.4971 0.1583 PSO

5 243.419 986.960 2.000 0.1829 GA
242.3719 983.6668 1.9818 0.1798 PSO

6 58.229 91.039 1.310 0.3635 GA
58.1448 89.5127 1.2219 0.3624 PSO

7 499.827 89.847 4.409 0.2029 GA
481.0639 89.5661 4.5287 0.1887 PSO

8 168.694 39.463 1.625 0.1512 GA
173.4375 46.8050 1.3893 0.1409 PSO

9 128.645 1060.965 2.896 0.2928 GA
133.0799 1033.10 3.0102 0.2862 PSO

5 CONCLUSION
    Basically a PSO algorithm eliminates the need of solving
a  set  of  non-linear  equations  for  optimal  values  of  soil
parameters.   A normal PSO algorithm can yield such
accurate results only with a large number of iterations. But,
the accelerated algorithm yields highly accurate results
with the least number of iterations in the PSO environment.
The algorithm developed has been tested on nine different
sets of data with three trials on each set of data. The
strength of this algorithm lies in reducing the search space
gradually about the most recent global best values of soil
parameters. The comparative study of the PSO algorithm
with the traditional algorithm proves the superiority of the
PSO algorithm in respect of simplicity and accuracy.
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